Download
###############################################################################
# __ _ _____ _____
# | \ | | / ____| / ____|
# | \| | _ _ | | | (___
# | . ` | | | | | | | \___ \
# | |\ | | |_| | | |____ ____) |
# |_| \_| \__,_| \_____| |_____/
#
# Fast constraint solving in Python - https://github.com/yangeorget/nucs
#
# Copyright 2024 - Yan Georget
###############################################################################
import argparse
from typing import List
from nucs.problems.problem import Problem
from nucs.propagators.propagators import ALG_ALLDIFFERENT
from nucs.solvers.backtrack_solver import BacktrackSolver
from nucs.statistics import get_statistics
class QueensProblem(Problem):
"""
A simple model for the n-queens problem.
CSPLIB problem #54 - https://www.csplib.org/Problems/prob054/
"""
def __init__(self, n: int):
super().__init__(
[(0, n - 1)] * n,
list(range(n)) * 3,
[0] * n + list(range(n)) + list(range(0, -n, -1)),
)
self.add_propagator((list(range(n)), ALG_ALLDIFFERENT, []))
self.add_propagator((list(range(n, 2 * n)), ALG_ALLDIFFERENT, []))
self.add_propagator((list(range(2 * n, 3 * n)), ALG_ALLDIFFERENT, []))
def solution_as_matrix(self, solution: List[int]) -> List[List[str]]:
n = len(solution)
return [([" "] * i + ["X"] + [" "] * (n - i - 1)) for i in range(n)]
# Run with the following command (the second run is much faster because the code has been compiled):
# NUMBA_CACHE_DIR=.numba/cache python queens_problem.py -n 10
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("-n", type=int, default=10)
args = parser.parse_args()
problem = QueensProblem(args.n)
solver = BacktrackSolver(problem)
solver.solve_all()
print(get_statistics(solver.statistics))