language Essence 1.3

$This is the decision version of the cover test problem given k,b,t: int(1..), g: int(2..) where k>=t, b>=g**t letting alphabet be new type of size g letting switches be new type of size k find CoverTest: mset (size b) of function (total) switches --> alphabet such that forAll testcase: function switches --> alphabet$% every test case
, |toSet(testcase)| = t
.
exists test in CoverTest. testcase subsetEq test                $% must be covered by some test in CoverTest$=============================================================================
$INSTANCES$Note: These are all easy in that they can be solved by MiniZinc in under 2 minutes.
$The paper cited below uses Ilog Solver, which is tens of times faster.$These are easy and unsat
$letting t=3, g=2, k=5, b=8$letting t=3, g=2, k=5, b=9
$letting t=3, g=2, k=6, b=8$letting t=3, g=2, k=6, b=9
$letting t=3, g=2, k=6, b=10$letting t=3, g=2, k=7, b=8
$letting t=3, g=2, k=7, b=9$letting t=3, g=2, k=8, b=8
$letting t=3, g=2, k=8, b=11$letting t=3, g=2, k=9, b=11
$letting t=3, g=2, k=10, b=11$letting t=3, g=2, k=11, b=11
$letting t=3, g=2, k=12, b=11$These are easy and sat
$letting t=3, g=2, k=4, b=8$letting t=3, g=2, k=4, b=9
$letting t=3, g=2, k=5, b=10$letting t=3, g=2, k=6, b=12
$letting t=3, g=2, k=7, b=12$letting t=3, g=2, k=8, b=12
$letting t=3, g=2, k=9, b=12$letting t=3, g=2, k=10, b=12
\$letting t=3, g=2, k=11, b=12