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Abstract  

In this paper we present an ILOG Solver [1] program that solves the all interval 

problem quite efficiently.  Results presented in [2] have shown that finding all 

solution for medium size problems was quite easy with modern CP tools, but recent 

results [5] claimed that such tools weren’t efficient for finding more than one solution 

for large instances. We first show a simple program that searches for all solutions, 

similar to what is presented in [2].  Refinements of this program using arc-consistent 

constraints are then presented.  Finally, we present results on searching for several 

solutions on very large instances of the problem.    

Specification  

This problem is described as  prob007 in the CSPLIB, at the URL: 

http://www-users.cs.york.ac.uk/~tw/csplib/prob/prob007/spec.html  

It can be expressed as follow.  Find a permutation (x1, ..., xn) of 

{0,1,...,n-1} such that the list (abs(x2-x1), abs(x3-x2), ... , abs(xn-

xn-1)) is a permutation of {1,2,...,n-1}.  

Finding all solutions 

The problem is represented with an array of variables x and a second array y for 

representing the differences.  Each array is subject to an all different constraint using 
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bound consistency [3].  Searching for solutions uses a standard first fail strategy 

(smallest domain first). 
 
void prob007(IlcManager m, int n) { 
  IlcIntVarArray x(m, n, 0, n-1); 
  IlcIntVarArray y(m, n-1, 1, n-1); 
  for (int i=0; i<n-1; i++) 
    m.add(y[i]==IlcAbs(x[i+1] - x[i])); 
  m.add(IlcAllDiff(x, IlcWhenRange)); 
  m.add(IlcAllDiff(y, IlcWhenRange)); 
  m.add(IlcGenerate(x, IlcChooseMinSizeInt)); 
} 

 

Results obtained with this program are summarized in the following table.  The 

second column indicates the number of dead ends during search.  Running times 

are given in seconds on a 800MHz PentiumIII laptop running Windows 2000. 

 

n backtracks time #solutions 

8 496 0.03 40 

9 1826 0.12 120 

10 7153 0.51 296 

11 30743 2.30 648 

12 138990 11.3 1328 

13 676359 57.4 3200 

14 3457219 316.3 9912 

 

Using arc consistency 

It is possible to improve the previous results by using arc-consistency pruning at 

each node of the search tree.  This can be obtained by using arc-consistent 

implementations of the constraints of the problem.  ILOG Solver provides arc-

consistent all different constraints [4].  The constraint linking the variables x and y is 

represented by the set of triples (i,j,abs(j-i)) and (j,i,abs(j-i)) 

satisfying it. 



void prob007AC(IlcManager m, int n){ 
  IlcIntVarArray x(m, n, 0, n-1); 
  IlcIntVarArray y(m, n-1, 1, n-1); 
  IlcIntTupleSet set(m,3); 
  int i,j; 
  for(i=0;i<n-1;i++){ 
    for(j=i+1;j<n;j++){ 
      set.add(IlcIntArray(m,3, i, j, IlcAbs(j-i))); 
      set.add(IlcIntArray(m,3, j, i, IlcAbs(j-i))); 
    } 
  } 
  set.close(); 
  for (i=0; i<n-1; i++){ 
    IlcIntVarArray vars(m, 3, x[i], x[i+1], y[i]); 
    m.add(IlcTableConstraint(vars, set, IlcTrue)); 
  } 
  m.add(IlcAllDiff(x, IlcWhenDomain)); 
  m.add(IlcAllDiff(y, IlcWhenDomain)); 
  m.add(IlcGenerate(x, IlcChooseMinSizeInt)); 
} 
 

The results are now 

 

n backtracks time 

8 270 0.05 

9 828 0.18 

10 2777 0.66 

11 10071 2.50 

12 38778 10.3 

13 156251 43.3 

14 674346 199.6 

 

The number of backtracks has been reduced drastically, and running time growth is 

slower.  For larger instances arc-consistency is better than bound consistency. 

Solving large instances 

For large instances, the cost of arc-consistency is too high.  Using the bound-

consistency model presented above, one can solve extremely large instance quickly, 



using a search ordering similar to the one presented in [1].  The idea is to assign first 

the largest possible differences. The code of the program is then: 

 
void prob007large(IlcManager m, int n){ 
  IlcIntVarArray x(m, n, 0, n-1); 
  IlcIntVarArray y(m, n-1, 1, n-1); 
  int i; 
  for (i=0; i<n-1; i++){ 
    m.add(y[i]==IlcAbs(x[i+1] - x[i])); 
  } 
  m.add(IlcAllDiff(x, IlcWhenRange)); 
  m.add(IlcAllDiff(y, IlcWhenRange)); 
  m.add(IlcGenerate(y,IlcChooseMaxMaxInt, IlcIntSelectMax(m))); 
  m.add(IlcGenerate(x)); 
} 
 

This program is quite fast at finding one or two solutions, without any backtracking, 

as shown in the next table.  Note that all problems of size smaller than 100 solve in 

less than .01 second.  The last two columns give the running time needed to get the 

first and the second solutions respectively. 

 

n backtracks time(1st) time(2nd) 

100 0 0.01 0.01 

200 0 0.04 0.05 

500 0 0.27 0.3 

1000 0 2.12 2.56 

2000 0 11.9 14.9 

 

It was claimed in [5] that ILOG Solver was quite slow at finding a second solution, 

taking more than  one hour to solve the problem of size 18.  The above result shows 

that this is not the case.  The two solutions found are the following ones: 
(0, n-1, 1, n-2, 2, …) 

(n-1, 0, n-2, 1, n-3, …) 

 

Those two solutions are symmetrical.  Indeed, one can be obtained from the other 

by substituting n-1-xi for xi.  If we look for different solutions, following the 



arguments given in [5], we can get rid of the symmetrical solution by adding an extra 

constraint x0<x1. The results using this additional constraint are summarized in the 

table below. 

n backtracks time(1st) time(2nd) 

100 3 0.01 0.02 

200 0 0.04 0.09 

500 0 0.03 0.87 

1000 3 2.19 6.6 

2000 0 12.1 32.8 

 

The running times are greater, but still quite acceptable.  In particular for problems of 

size less than 100, the second solution is found in .02 seconds or less. 

Summary  

We have shown how to efficiently compute all solutions to the all interval problem, 

using arc consistent constraints.  We have also presented new results on the search 

for several solutions on very large instances of the same problem.   
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