
A Note on CSPLIB prob007

H. Simonis
N. Beldiceanu

COSYTEC SA
4, rue Jean Rostand

F-91893 Orsay Cedex
France

{simonis,beldiceanu}@cosytec.com

Abstract
In this note we present a CHIP program to solve the all-interval series problem,
presented as problem prob007 in the CSPLIB. We show that one solution can be
easily constructed for any problem size, or found without backtracking by a simple
search strategy. We then present results on finding all solutions for problem sizes
6,8,10 and 12. Two different constraint models show the advantage of using global
constraints for solving this problem. The problem was presented originally as a
difficult problem for stochastic local search methods, we show that the CHIP model
allows a simple and relatively efficient solution of this problem.

Problem
The problem was first presented in [Hoo98], and then proposed to the CSPLIB
problem library (http://dream.dai.ed.ac.uk/group/csplib) as problem prob007. It can be
expressed the following way:
We search for a permutation

[X1, X2, ..,Xn]

of the numbers 1..n such that the list

[|X1-X2|, |X2-X3|,...,|Xn-1-Xn|]

is a permutation of [1,2,...,n-1]. This all-interval series can be defined for all sizes n.
For n=12, the problem corresponds to arranging the half-notes of a scale in such a
way that all musical intervals (minor second to major seventh) are covered.
The problem was presented in [Hoo98] as a benchmark for comparing different
stochastic local search methods, by translating a CSP formulation into a 3-SAT
problem. Results for different methods were disappointing, not all methods were able
to find solutions for the problem size 12.

Program
We can express the problem easily in CHIP with the following program. The problem
is expressed by N variables with a domain 1..N. These variables must be alldifferent.
The absolute distance between two variables is expressed using a minimum,
maximum and equality constraint for each pair of variables. We use the identity

|X-Y| = max(X,Y)-min(X,Y)

These constraints generate a set of distance variables. We impose the constraint that
all these variables must be different with a second alldifferent constraint. A standard
search method labeling/4 is used to find values.

run(N,L):-
length(L,N),
L :: 1..N,
alldifferent(L),
differences(L,K,N),
alldifferent(K),
labeling(L,0,input_order,indomain).

differences([_],[],_).
differences([A,B|R],[X|T],N):-

difference(A,B,X,N),
differences([B|R],T,N).

difference(A,B,X,N):-
[Min,Max,X] :: 1..N,
minimum(Min,[A,B]),
maximum(Max,[A,B]),
Max #= Min+X.

The CHIP built-in alldifferent only performs syntactic constraint propagation with
forward-checking. A more powerful propagation can be achieved using the cycle
constraint [BC94] to express that the set of values form a permutation. The program is
changed to

run(N,L):-
length(L,N),
L :: 1..N,
A :: 1..N, cycle(A,L),
differences(L,K,N),
N1 is N-1,
B :: 1..N1, cycle(B,K),
labeling(L,0,input_order,indomain).

The constraint propagation of the cycle constraint uses a bi-partite matching algorithm
between the variables and the possible values. This propagation can detect failure
much earlier or enforce necessary conditions in the assignment.
In the evaluation below we will use both variants.

Finding one solution
The program above can be used to find a solution of the problem. But it is easy to see
that a solution for any size N can be constructed by the sequences

 [N,1,N-1,2,N-2,3,...,N/2+2,N/2-1,N/2+1,N/2] with the differences [N-1,N-2,...2,1] for
even N and

[N,1,N-1,2,N-2,3,..., 2
2

+



N

, 





2
N

, 1
2

+



N

] with the differences [N-1,N-2,...2,1] for

odd N.

This sequence can be generated in the above program by changing the labeling
strategy to

run(N,L):-
length(L,N),
L :: 1..N,
alldifferent(L),
differences(L,K,N),
alldifferent(K),
labeling(K,0,input_order,large),
labeling(L,0,input_order,large).

large(X):-
indomain(X,max).

This program will first instantiate the distance variables to the values N-1,N-2,...,1.
After setting the first variable in L to the value N, all other variables will be
instantiated by constraint propagation. Note that this program does not backtrack to
find a first solution. A second solution starting with the value 1 is found as the first
alternative.
This construction shows that finding one solution to the problem is not difficult and
does not require any search.

Finding all solutions
A more challenging problem is to find all solutions for a given problem size. We have
run the program for sizes 6,8,10 and 12 using our two program variants, one with the
syntactic alldifferent constraint, the other with the global cycle constraint. The
labeling strategy was selecting the variables in the input_order, using the standard
indomain value selection, starting with the smallest value in the domain. The
following results are obtained (CHIP V5.2 on Pentium MMX 233 MHz, Windows
NT):

Size Backtracking
Steps

Execution
Time

Solutions

6 162 0.24 s 24
8 1698 1.2 s 40
10 38978 27 s 296
12 1047274 803 s 1328

Table1: Results with alldifferent constraint

Size Backtracking
Steps

Execution
Time

Solutions

6 124 0.25 s 24
8 538 1.1 s 40
10 6530 15 s 296
12 109242 311 s 1328

Table 2: Results with cycle constraint

The results show a significant improvement of the second program for larger problem
sizes. For the smallest size 6, both programs have comparable results for backtracking
steps and execution times. For the problem size 12, the cycle constraints reduces the
number of backtracking steps by nearly a factor of ten, and the execution time by a
factor of 2.5.
The next table shows the weak impact of the variable selection strategy in the labeling
method. We have run the cycle based program for problem size 12 with the variable
selection methods input_order, most_constrained and first_fail. Only relatively small
variations of the results were observed.

Size 12 Backtracking Steps Execution Time Solutions
input_order 109242 315 s 1328
most_constrained 112135 325 s 1328
first_fail 108994 312 s 1328

Table 3: Results for cycle constraint with different variable selection methods

Improvements
The program could be significantly improved by using a specific constraint for the
absolute distance calculation. Such a constraint is not provided as a built-in in CHIP,
but could be easily added. If full lookahead is used for the distance constraint, further
improvements in the constraint propagation are possible and the number of
backtracking steps should be reduced.

Summary
In this note we have presented a CHIP program to solve the problem prob007 of the
CSPLIB. We show that for any problem size one solution can be constructed
systematically and generated without any backtracking. Finding all solutions for the
problem sizes 6,8,10 and 12 is quite efficient with a simple CHIP program. The use of
a global constraint to express the permutation conditions in the problem significantly
reduces the execution time and the number of backtracking steps.

Bibliography
[BC 94] N. Beldiceanu, E. Contejean
Introducing Global Constraints in CHIP
Journal of Mathematical and Computer Modelling, Vol 20, No 12, pp 97-123, 1994

[Hoo98] H. Hoos
Stochastic Local Search | Methods, Models, Applications
PhD thesis, Computer Science Department
Technical University of Darmstadt, Germany, 1998

