/* Car sequencing in Comet. This is based on the OPL3 model car.mod. This Comet model was created by Hakan Kjellerstrand (hakank@bonetmail.com) Also, see my Comet page: http://www.hakank.org/comet */ // Licenced under CC-BY-4.0 : http://creativecommons.org/licenses/by/4.0/ import cotfd; int t0 = System.getCPUTime(); int nbCars = 6; int nbOptions = 5; int nbSlots = 10; range Cars = 1..nbCars; range Options = 1..nbOptions; range Slots = 1..nbSlots; int demand[Cars] = [1, 1, 2, 2, 2, 2]; int option[Options,Cars] = [ [ 1, 0, 0, 0, 1, 1], [ 0, 0, 1, 1, 0, 1], [ 1, 0, 0, 0, 1, 0], [ 1, 1, 0, 1, 0, 0], [ 0, 0, 1, 0, 0, 0] ]; tuple Tcapacity { int l; int u; } Tcapacity capacity[Options] = [ Tcapacity(1,2), Tcapacity(2,3), Tcapacity(1,3), Tcapacity(2,5), Tcapacity(1,5) ]; int optionDemand[i in Options] = sum(j in Cars) demand[j] * option[i,j]; cout << "optionDemand: " << optionDemand<< endl; Solver m(); var{int} slot[Slots](m,Cars); var{int} setup[Options,Slots](m,0..1); Integer num_solutions(0); // exploreall { minimize sum(s in Cars) s*slot[s] subject to { forall(c in Cars ) m.post(sum(s in Slots ) (slot[s] == c) == demand[c]); forall(o in Options, s in 1..nbSlots - capacity[o].u + 1) m.post(sum(j in s..s + capacity[o].u - 1) setup[o,j] <= capacity[o].l); forall(o in Options, s in Slots ) m.post(setup[o,s] == option[o,slot[s]]); forall(o in Options, i in 1..optionDemand[o]) m.post(sum(s in 1..(nbSlots - i * capacity[o].u)) setup[o,s] >= (optionDemand[o] - i * capacity[o].l)); } using { label(m); num_solutions := num_solutions + 1; cout << slot << endl; forall(o in Options) { cout << capacity[o].l << "/" << capacity[o].u << ": " ; forall(s in Slots) { cout << setup[o,s] << " "; } cout << endl; } cout << endl; } cout << "\nnum_solutions: " << num_solutions << endl; int t1 = System.getCPUTime(); cout << "time: " << (t1-t0) << endl; cout << "#choices = " << m.getNChoice() << endl; cout << "#fail = " << m.getNFail() << endl; cout << "#propag = " << m.getNPropag() << endl;